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ABSTRACT

Previous work [1] has shown that the classification of indecomposable off-shell

representations of N -supersymmetry, depicted as Adinkras , may be factored into

specifying the topologies available to Adinkras, and then the height-assignments

for each topological type. The latter problem being solved by a recursive mech-

anism that generates all height-assignments within a topology [1], it remains to

classify the former. Herein we show that this problem is equivalent to classifying

certain (1) graphs and (2) error-correcting codes.

Mathematics Subject Classification. Primary: 81Q60; Secondary: 15A66, 16W70

Keywords : Supersymmetry, Error-Correcting Codes, Graphs

1 The Statement of the Problem

Supersymmetry algebras are a special case of super-algebras, where the odd generators, Q, form

a spin-1
2

representation of the Lorentz algebra contained in the even part and {Q,Q} necessarily

contains the translation generators in the even part. Systems exhibiting such symmetry have

been studied over more than three decades and find many applications, although experimental

evidence that Nature also employs supersymmetry is ironically lacking within high-energy particle

physics, where it was originally invented. Nevertheless, as the only known systematic mechanism

for stabilizing the vacuum2, supersymmetry is also a keystone in most contemporary attempts at

unifying all fundamental physics, such as string theory and its M - and F -theory extensions. There,

one typically needs a large number, N ≤ 32, of supersymmetry generators, in which case off-shell

descriptions, indispensable for a full understanding of the quantum theory, are sorely absent.

1To appear in Discrete and Computational Mathematics, Eds: F. Liu, et. al., (Nova Science Publishers, Inc.,2008).
2Vacuum here denotes the space of absolute ground states in these quantum theories.
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1.1 Reduction to 1 Dimensions

This has motivated some of the recent interest [2,3,4,5,6,7,8] in the 1-dimensional dimensional

reduction of supersymmetric field theories3, whereupon the supersymmetry algebra is specified:{
QI , QJ

}
= 2 δIJ H ,

[
H , QI ] = 0 , I, J = 1, · · · , N , (1)

where H is the Hamiltonian, generating the 1-dimensional Poincaré group: time-translations. This

defers the incorporation of the higher-dimensional non-abelian Lorentz algebras till after the clas-

sification of (1|N)-supermultiplets (= representations of (1|N)-supersymmetry) [2]. Thereby, the

non-abelian nature of higher-dimensional Lorentz algebras gives rise to a collection of obstructions

of dimensionally oxidizing some of the (1|N)-supermultiplets into their higher-dimensional ana-

logues; the unobstructed ones are then the representations of supersymmetry algebras in 2- and

higher-dimensional spacetimes.

1.2 Adinkras and Representations of (1|N)-Supersymmetry

In particular, Refs. [9,1,10] introduce, hone and apply a graphical device, akin to wiring schematics,

which can fully encode all requisite details about (1|N)-supersymmetry, its action within off-shell

supermultiplets and the possible couplings of all off-shell supermultiplets—for all N . These graphs,

called Adinkras , are closely related to the rigorous underpinning of off-shell representation theory

in supersymmetry [11], but are also intuitively easy to understand and manipulate. We restrict to

(1|N)-supersymmetry without central charges, and to supermultiplets upon which the supersym-

metry acts by a Z×2 -monomial4 linear transformation.

Adinkras represent component bosons in a supermultiplet as white nodes, fermions as black. A

white and a black node are connected by an edge, drawn in the Ith color if the Ith supersymmetry

transforms the corresponding component fields one into another. A sign/parity degree of freedom [9]

in the supersymmetry transformation of a component field into another is represented by solid vs .

dashed edges. In the natural units (~ = 1 = c), all physical fields have a definite engineering

dimension defined up to an overall additive constant, and we accordingly stack the nodes at heights

that reflect the engineering dimensions of the corresponding component fields:

(2)

These two Adinkras depict two (1|4)-supermultiplets, consisting of four bosons and four fermions;

the action of each of the four supersymmetry generators is represented by the edges colored in one

3We refer to N -extended supersymmetry in 1-dimensional time as “(1|N)-supersymmetry”. Besides dimen-
sional reduction of field theories in higher-dimensional spacetime (including here world-sheet theories for
superstrings) to their 1-dimensional shadows, (1|N)-supersymmetry is also present in the study of supersym-
metric wave functionals in any supersymmetric quantum field theory , and so applies to all of them also in
this other, more fundamental way.

4Monomial matrices have a single non-zero entry in every row and column; by Z×2 -monomial we mean that
the nonzero entries are ±1, forming a multiplicative Z2 group.
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of the four colors. The two top white nodes in the left-most Adinkra correspond to bosons the

engineering dimension of which is 1 mass-unit more than those of the bosons corresponding to the

bottom two; the engineering dimension of the fermions, depicted by the black nodes in the mid-level,

is half-way between these. By contrast, in the right-most Adinkra, there is only one boson with

the lowest engineering dimension, and three have 1 mass-unit more than that. The supersymmetry

transformation rules may be read off the Adinkras (2) straightforward manner, but we defer the

details to the literature [9,1]; suffice it here to draw the Reader’s attention to the fact that every

quadrangle must contain an odd number of dashed edges. This corresponds to the fact that the

supersymmetry generators, QI , anticommute.

— ? —

In general, then, (1|N)-supermultiplets are then obtained, in terms of Adinkras, using standard

techniques in linear algebra, by: (1) specifying (1|N)-sypersymmetry preserving maps between

direct sums of Adinkras, including the “0” (empty) Adinkra, and (2) specifying the kernels and

cokernels of such maps, iterating such constructions as needed; we return to this in section 2.4.

1.3 Adinkra Topologies

Given any Adinkra, let topology denote the overall connectivity of the nodes within an Adinkra,

including the choice of dashed vs . full edges but up to sign-redefinition of every node5. Let the

collection of all Adinkras that share the same topology be called a family . Ref. [1] specifies the

(superdifferential) operators that implement a recursive procedure whereby the nodes may be repo-

sitioned in all possible height arrangements, starting from any one of them, while maintaining the

topology. This procedure thus reconstructs the entire family of Adinkras (and supermultiplets which

they represent) from any one of them.

It then remains to specify all the possible Adinkra topologies, given N , the number of supersym-

metries, and this is the subject of Ref. [12]. We prove therein that all Adinkras have the topology

of the form of a k-fold iterated Z2-quotient of the N -cube, IN , in which the number of supersym-

metries is preserved and the supersymmetry action upon the Adinkra remains linear and 1–1 in

each iteration. We defer to Ref. [12] for the rigorous proofs, but present here the gist of this result.

1.3.1 The Nature of the Quotients

To begin with, we associate to every monomial µj := Q
aj1

1 Q
aj2

2 · · ·Q
ajN

N , with αjl ∈ {0, 1}, the point

(aj1, aj2, · · · , ajN) ∈ [0, 1]N ⊂ RN ; clearly, there are 2N such monomials and points (nodes). The I-

labeled edges then connect every point to the one that differs from it only in the Ith coordinate, i.e.,

they connect every monomial to one that differs only in whether it contains QI or not. The same

structure is obtained by letting now all the monomials µj act upon a single field, φ—the ‘lowest

component field’, each µj producing a (1|N)-superpartner, (µjφ). The collection of so-obtained

component fields, {φ, (µ1φ), (µ2φ), · · · }, has inherited the N -cubical topology, admits a linear, 1–1

and off-shell action of the supersymmetry, and will be called herein the free supermultiplet6. Owing

5By changing the sign of a node, i.e., the component field corresponding to it, every edge connected to it will
flip from dashed to full and vice versa.

6This supermultiplet is also referred to as ‘unconstrained’, ‘Salam-Strathdee’, and in contrast to subsequent
constructions, ‘unprojected’.
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to this, operations performed on the N -cube of QI-monomials have an obvious analogue on the

N -cubical free supermultiplet, and we shan’t bother with notational distinctions between these.

To preserve N , the number of supersymetries, the action with respect to which we intend to

perform the quotient must not permute any of the QI ’s. That is, all N directions in [0, 1]N ⊂ RN

must remain fixed. It then remains to perform simultaneous reflections about mid-points of some

of the edges of the N -cube, the effect of which is the identification of the endpoints of those edges.

This is implemented by operators of the form (αHβ + γµj), for some constants α, β, γ.

For an operator (αHβ +γµj) to be idempotent and serve as a projection operator for a quotient,

only those µj may be used that square, upon using (1), to an integral power of H. Such µj all must

be constructed from a doubly-even (divisible by 4) number of different QI ’s and we denote:

µ̂j := Q
aj1

1 Q
aj2

2 · · ·Q
ajN

N , such that
N∑
l=1

ajl = 0 mod 4 . (3)

The projection operators7

Πj :=
(
Hβj ± µ̂j

)
/(2Hβj ) , where βj = deg(µ̂j) (4)

impose on the N -cube and the associated free supermultiplet relations of the form

H2 ' QI1QI2QI3QI4 , for some different I1, I2, I3, I4 , (5)

where the monomial on the right-hand side of (5) is doubly-even, i.e., its degree is divisible by four.

Such a relation implies a whole host of others, obtained by multiplying through with one or more

of the QI ’s; for example:

Eq. (5)×QI5 : H2QI5 ' QI1QI2QI3QI4QI5 ; (6)

Eq. (5)×QI4 : H2QI4 ' QI1QI2QI3QI4QI4 = QI1QI2QI3 H ,

so H QI4 ' QI1QI2QI3 ; (7)

Eq. (5)×QI3 : H2QI3 ' QI1QI2QI3QI4QI3 = −QI1QI2 H QI4 ,

so H QI3 ' −QI1QI2QI4 ; (8)

Eq. (5)×QI4QI3 : H2QI4QI3 ' QI1QI2QI3QI4QI4QI3 = QI1QI2 H
2 ,

so QI4QI3 ' QI1QI2 ; (9)

and so on. This operation may be pictured as the identification of all points mapped into each

other through a simultaneous reflection through the mid-points of all I1,- I2,- I3- and I4-edges.

An equation such as (5) then clearly projects on the zero-set (kernel) of Πj := (H2−µ̂j)/(2H2). It

is not hard to show that Πj are all idempotent, and Πj+Π̄j = 1l, for every j, if Π̄j := (H2+µ̂j)/(2H
2).

7It is possible to ‘clear the denominator’ and avoid negative powers of the Hamiltonian, H, by first transforming
the free supermultiplet, using the vertex-raising of Ref. [1], into the corresponding ‘base’ supermultiplet [9],
where all bosons and all fermions, respectively, have the same engineering dimension. This effectively replaces
H in the present discussion with the identity operator.
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The reflection map H2 ↔ µ̂j, with respect to which an equation of the form (5) describes the

quotient will also be called µ̂j; each such map is an involution of the N -cube, i.e., a Z2-reflection.

Consequently, division by the action of any µ̂j halves the number of nodes.

For an iterated quotient, say ((IN/µ̂i)/µ̂j), it is necessary and sufficient that [µ̂i, µ̂j] = 0. This

implies that µ̂i and µ̂j must have an even number (possibly none) of Q1, · · · , QN in common.

It then remains “merely” to find all such possible inequivalent combinations of such µ̂j-projections,

counting two combinations equivalent if one can be turned into the other by a permutation of the

Q1, · · · , QN and of the µ̂1, · · · , µ̂k.

1.3.2 Listing the Quotients

The first few cases are easy to list (for complete proofs, see Ref. [12]):

• For N < 4, no projection can exist—we need at least four QI ’s. Thus, for each of N = 1, 2, 3,

we have a single topology:

∗ I1 (interval), I2 (square) and I3 (cube).

• For N = 4, there is only one projection 4n-omial, µ̂1 = Q1Q2Q3Q4 =: µ[1234], which identifies

the antipodal nodes in a 4-cube. The topology of the quotient, I4/µ̂1, can be depicted easily,

by identifying the antipodal nodes in the Adinkra with the I4 (the hypercube) topology, as

illustrated here:

(10)

Thus, for N = 4, we have two distinct topologies:

∗ I4 and D4 := (I4/µ̂1), depicted respectively to the left and to the right in (10).

• For N = 5, there are
(
5
4

)
= 5 choices of which four QI ’s to include in µ̂j, but these are all

equivalent by QI-permutations. All of these leave one of the five lattice directions in the 5-

cube intact, so that the result of this quotient must be a direct product of the N = 4 quotient

and the fifth, unprojected direction. Thus, there exist two N = 5 topologies:

∗ I5 and I1×D4.

• For N = 6, there are two mutually commuting µ̂j’s; up to a QI-permutation, these are

µ̂1 = µ[1234] and µ̂2 = µ[1256]. Notice that their composition, µ̂1 ◦ µ̂2 = µ[3456], also satisfies the

above requirements, which we may call µ̂1+2. It is not hard to see that (I6/µ̂1) ' (I6/µ̂2) '
(I6/µ̂1+2) ' (I2×D4), where ‘'’ denotes equivalence by QI- and µ̂j-permutations. However,

we can now also form a double quotient, (I6/µ̂i)/µ̂j, where µ̂i, µ̂j are any two of µ̂1, µ̂2, µ̂1+2;

they all give equivalent results. Note that, on any such a double quotient, the third µ̂j acts

trivially, so that there is no triple quotient. We thus have the following three inequivalent

5



topologies:

∗ I6, (I2×D4) and D6 := ((I6/µ̂1)/µ̂2).

• For N = 7, there are three mutually commuting reflection operators, up to a QI-permutation:

µ̂1 = µ[1234], µ̂2 = µ[1256] and µ̂3 = µ[1357]. Their compositions,

µ̂1 ◦ µ̂2 = µ[3456] , µ̂1 ◦ µ̂3 = µ[2457] , µ̂2 ◦ µ̂3 = µ[2367] , µ̂1 ◦ µ̂2 ◦ µ̂3 = µ[1467] , (11)

also satisfy the above requirements. Extending thus the previous procedure, we now have the

following four inequivalent topologies:

∗ I7, (I3×D4), (I1×D6) and E7 :=
(
((I6/µ̂1)/µ̂2)/µ̂3

)
.

• For N = 8, there are four mutually commuting µ̂j’s, up to a QI-permutation: µ̂1, µ̂2, µ̂3 from

the previous cases, plus µ̂4 = µ[2468]. Their compositions (11) plus

µ̂1 ◦ µ̂4 = µ[1368] , µ̂2 ◦ µ̂4 = µ[1458] , µ̂3 ◦ µ̂4 = µ[12345678] ,

µ̂1 ◦ µ̂2 ◦ µ̂4 = µ[2358] , µ̂1 ◦ µ̂3 ◦ µ̂4 = µ[5678] , µ̂2 ◦ µ̂3 ◦ µ̂4 = µ[3478] ,

µ̂1 ◦ µ̂2 ◦ µ̂3 ◦ µ̂4 = µ[1278] ,

(12)

also satisfy the above requirements. Extending thus the previous procedure, we now have the

following seven inequivalent topologies:

∗ I8, A8 := (I8/µ[12345678]), (I4×D4), (D4×D4), (I2×D6), D8, (I1×E7) and, finally,

E8 :=
((

((I6/µ̂1)/µ̂2)/µ̂3

)
/µ̂4

)
.

Notice the ‘new’ construction, (D4×D4), which uses the facts that:

1. I8 = I4
1234×I4

5678—the 8-cube is the direct product of the 4-cube generated by Q1, · · · , Q4

and I4
5678 generated by Q5, · · · , Q8;

2. µ̂1 operates exclusively within I4
1234 ⊂ I8, and the combined reflection (µ̂1 ◦ µ̂3 ◦ µ̂8)

exclusively within I4
5678 ⊂ I8.

Thus, D4×D4 := (I4/µ̂1)×(I4/(µ̂1 ◦ µ̂3 ◦ µ̂8)).

The notation “(D4×D4)” does not preclude monomials that containQI ’s from among bothQ1, · · · , Q4

and Q5, · · · , Q8. Instead, it means that it is possible to generate the entire collection of these

monomials from the two disjoint sets, {µ[1234]} and {µ[5678]}. So, in fact, the full set is (D4×D4) =

{1l, µ[1234], µ[5678], µ[12345678]}, and indeed may also be generated by the non-disjoint µ[5678] and µ[12345678],

say. While this does not obstruct the identification of the set as (D4×D4), since it can be generated

from the disjoint {µ[1234]} and {µ[5678]}, it does point to an ambiguity that makes is difficult to

identify mutually commuting monomial sets each given in terms of a generating set only.

Although we have examined only the few lowest-N cases, it is obvious that there is an upper

limit on how many mutually commuting 4n-omials can be found, constructed from a fixed number,

N , of QI ’s. We give here a recursive definition of this function:

κ(N) :=


0 for 0 ≤ N < 4;⌊ (N−4)2

4

⌋
+ 1 for N = 4, 5, 6, 7;

κ(N−8) + 4 for N > 7, recursively.

(13)
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and refer to the literature [13,12] for proofs.

Finally, the topologies obtained by using µ̂j-projection operators from two mutually commuting

sets that are related by QI- and µ̂j-permutations are indistinguishable. We thus proceed to classify

the different types of such iterated Z2-quotients up to QI- and µ̂j-permutations.

2 Reformulations of the Problem

The recursive procedure started in section 1.3 is fairly clear and intuitive. It may be summarized

as the following algorithm:

1. Find all inequivalent maximal sets, Sα, of mutually commuting doubly-even QI-monomials,

2. For each Sα, construct the power-set, P (Sα), of all products of QI-monomials within Sα,

then identify those elements of P (Sα) which are equivalent up to QI- and µ̂j-permutations;

call this set P∗(Sα).

3. Construct all iterated quotients of the form (IN/µ̂α,j), for µ̂α,j ∈ P∗(Sα).

However, explicit constructions demonstrate that this becomes humanly intractable for larger N ,

and more efficient approaches are desired [12].

The first objective is to efficiently address the task 1 in the above algorithm. Thereafter, the

task 2 is straightforward, but obviously computation-intensive: it involves first the construction of

the power-set, P (Sα), for each set Sα and then the sifting for QI- and µ̂j-permutation inequivalent

elements to obtain the set of permutation-inequivalent subsets, P∗(Sα); a pre-selective construction

of the latter would be clearly preferable.

2.1 A Graphic Depiction

Since the supersymmetry generators, QI , may be freely permuted, one may think of them as an un-

ordered set, V , represented graphically by N nodes. The desired QI-monomials (3) then correspond

to wi-gons, G
(wi)

i ⊂ V , for which Eq. (3) implies

µ̂i 7→ G
(wi)

i , |G(wi)

i | = wi = 0 mod 4 (14)

and are representable as wi-gons within V ; to distinguish the G
(wi)

i ’s, we may color them distinctly.

The function

d(G
(wi)

i , G
(wj)

j ) := wi + wj − 2
∣∣G(wi)

i ∩G(wj)

j

∣∣ , (15)

counts in how many nodes G
(wi)

i and G
(wj)

j differ. Corresponding to the identity 1l = µ[−] (the empty

QI monomial, with no QI ’s), we denote the empty graph (no nodes and no edges) by ‘0’. We then

have that

d(G
(wi)

i ,0) = wi , ∀i & 0 ≤ wi ≤ |V | . (16)

The condition that µ̂i and µ̂j have an even number of QI ’s in common implies that

|G(wi)

i ∩G(wj)

j | ≡ 0 mod 2 . (17)

7



Eqs. (14) and (17) then imply that:

d(G
(wi)

i , G
(wj)

j ) ≡ 0 mod 4 . (18)

Thus, by iteratively listing G
(wi)

i ’s subject to conditions (14) and (17), the condition (18) is guar-

anteed for every pair in such a list. Furthermore, writing:

G
(wi)

i +G
(wj)

j := (G
(wi)

i ∪G(wj)

j ) \ (G
(wi)

i ∩G(wj)

j ) , (19)

we have that:

G
(wi)

i +G
(wj)

j = G
(wk)

k , with wk = d(G
(wi)

i , G
(wj)

j )
(18)
≡ 0 mod 4 . (20)

That is, the sum of any two of our 4n-gons is also a 4n-gon. From this, it also follows that:

If G
(wi)

i ∩G(wj)

j = ∅ , then wi, wj < |G(wi)

i +G
(wj)

j | ; (21)

If G
(wi)

i ⊂ G
(wj)

j , then G
(wi)

i ∩G(wj)

j = G
(wi)

i , and

G
(wi)

i +G
(wj)

j = G
(wj)

j \G(wi)

i . (22)

The results (21)–(22) permit us to systematically select the smaller wi-gons: For G
(wi)

i + G
(wj)

j to

be smaller than G
(wj)

j and so its more efficient replacement, Eqs. (20) and (15) would have to imply

that ∣∣G(wi)

i +G
(wj)

j

∣∣ < gj , i.e.
∣∣G(wi)

i ∩G(wj)

j

∣∣ > 1
2
gi . (23)

Now,

1. If wi = 4, then (23) implies that |G(wi)

i ∩ G(wj)

j | > 2, i.e., |G(wi)

i ∩ G(wj)

j | ≥ 4 whereupon

G
(wi)

i ⊂ G
(wj)

j , so that G
(wj)

j may be replaced by the smaller G
(wi)

i +G
(wj)

j , by Eq. (22).

2. If wi = 8, then (23) implies that |G(wi)

i ∩G(wj)

j | > 4, and owing to (20) then |G(wi)

i ∩G(wj)

j | ≥ 8;

but then G
(wi)

i ⊂ G
(wj)

j , so that G
(wj)

j may be replaced by the smaller G
(wi)

i +G
(wj)

j , by Eq. (22).

3. If wi = 12, then (23) implies that |G(wi)

i ∩G(wj)

j | > 6, i.e., |G(wi)

i ∩G(wj)

j | ≥ 8; it then remains

undetermined which are the smaller two from among G
(wi)

i , G
(wj)

j and G
(wi)

i +G
(wj)

j .

This proves:

Proposition 2.1 Let G
(wi)

i , G
(wj)

j both be w∗-gons satisfying the conditions (14) and (17). Then,

for wi ≤ 8, the condition (23) is both necessary and sufficient for replacing G
(wj)

j with the smaller

G
(wi)

i +G
(wj)

j ; for wi ≥ 12, Eq. (23) is only necessary.

2.2 Error-Detecting/Correcting Codes

We note that every monomial constructed from the N supersymmetry generators QI corresponds,

in a 1–1 fashion, to a binary N -digit number (N -vector), the digits (components) of which are read

off as follows:

µ̂j = Q
aj1

1 Q
aj2

2 · · · Q ajN

N 7→ aj := (aj1, aj2, · · · , ajN) , ajl ∈ {0, 1} . (24)

8



and where
N∑
l=1

ajl = wj ≡ 0 mod 4 , j = 1, · · · , k , (3′)

echoes Eqs. (3) and (14). Thus, for example:

N=6 :

 µ̂1 7→ 001111 ,
µ̂2 7→ 111100 ,

µ̂1 ◦ µ̂2 7→ 110011 ;
N=7 :



µ̂1 7→ 0001111 ,
µ̂2 7→ 0111100 ,

µ̂1 ◦ µ̂2 7→ 0110011 ,
µ̂3 7→ 1010101 ,

µ̂1 ◦ µ̂3 7→ 1011010 ,
µ̂2 ◦ µ̂3 7→ 1101001 ,

µ̂1 ◦ µ̂2 ◦ µ̂3 7→ 1100110 ;

(25)

and so on.

It turns out that each such collection of k binary N -digit numbers (N -vectors) forms an (2-

error-detecting and 1-error-correcting) [N, k]-code [14,15], and their double-evenness (divisibility of

wi by 4) by virtue of Eq. (20), guarantees that they are all self-orthogonal . In fact, most of the

preceding section, SS 2.1, is straightforward to re-cast into the corresponding statements about

such [N, k]-codes. In fact, the function (15) is well known as the Hamming distance between two

code-words, and (16) as the Hamming weight of a code-word.

Just as the monomials µ̂1 = Q1Q2Q3Q4, µ̂2 = Q3Q4Q5Q6 for N = 6, and µ̂1 = Q1Q2Q3Q4, µ̂2 =

Q3Q4Q5Q6, µ̂3 = Q1Q3Q5Q7 for N = 7, etc., generate all the others in the collections (25), every

other set, Sα of mutually commuting, doubly-even monomials in Q1, · · · , QN has a generating set .

These generating sets are by no means unique: the full collection of µ̂j-monomials for N = 6 is

equally well generated by either two from among µ̂1, µ̂2, (µ̂1 ◦ µ̂2), and all choices are equivalent to

each other via QI- and µ̂j-permutations. For higher N ,

1. the number of such distinct generating sets is combinatorially larger,

2. they are not all equivalent to each other,

3. both the automorphism groups and the number of inequivalent classes grows combinatorially.

The situation is identical with the [N, k]-codes specified by the mapping (24).

There is a considerable body of literature, even in book form [14,15], on error-detecting/correcting

codes, but much of the research in this field focuses on codes containing code-words with weights no

smaller than a certain minimum. By contrast, the very definition (14) implies that we are interested

in codes consisting only of doubly-even code-words, i.e., the Hamming weight of every code-word

must be divisible by 4, not merely ‘larger than 3’.

Furthermore, (1|N)-supersymmetry and its representations occur in physics applications in at

least three different ways: (1) dimensional reduction of the (real) spacetime in field theories, (2) di-

mensional reduction of the “underlying” theory8 of string-theory and its M - and F -theory exten-

sions, and (3) effective supersymmetry in the Hilbert space of all supersymmetric quantum field

8This is well understood for (super)string theory, where the “underlying” theory is a quantum field theory with
the world-sheet of the string as the domain space; it is not known precisely what sort of theories constitute
the “underlying” theories of M - and F -theory.
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theories. In case (1), N will be limited, except for the low, N = 1, 2, 3 cases, to being divisible by 4.

However, in the remaining two cases, this restriction is far less strict and depends on the details of

the dynamics of the concrete model considered. However, various considerations place a relatively

well-accepted upper bound: N ≤ 32 from considerations in M -theory [16].

Given a fixed N , it is desirable to find all indecomposable representations of (1|N)-supersym-

metry, as all these may, conceivably, serve as building blocks in various such theories. This implies

that we do need all possible Adinkra topologies, i.e., all [N, k]-codes, where k ≤ κ(N) as defined

in Eq. (13).

Binary [N,κ(N )]-codes are maximal in the information-theoretic sense guaranteed by Shannon’s

theorem: the fraction k/N is called the information rate of an [N, k]-code and measures how much

of the information is being transmitted. The maximal κ(N) therefore corresponds to the maximal

information rate: κ(N )/N ≤ 50 %, and κ(N )/N = 50 % only when N = 0 mod 8.

In turn, for any fixed N , the [N,κ(N )]-codes also correspond to maximal iterated Z2-quotients

of IN ; that is, the iterated quotient is done the maximal, κ(N), number of times. Dually, the

number of nodes in the resulting Adinkra is minimal for the fixed N : the size of the corresponding

indecomposable (1|N)-supermultiplet, (2N−k−1, 2N−k−1), is minimal for k = κ(N).

Note, however, that these codes and Adinkra topologies for N > 9 are not unique! For example,

rather famously, there exist two distinct maximal binary doubly-even [16, 8]-codes, corresponding

to the Lie algebras E8×E8 and D16

Now, every [N, k]-code has a generating set consisting of k N -digit binary numbers, which

corresponds to a binary matrix of k rows and N columns. This matrix is of maximal rank [15].

Using Gauss-Jordan row operations and column-permutations only (and so replacing a generating

set by an equivalent one), this matrix can then be brought into the format [ 1lk |A ], where A is an

(N−k)× k binary matrix, called the redundancy part , and 1lk is the k × k identity matrix.

It is then tempting to (falsely) conclude that all binary [N, k]-codes are classified by classifying

all smaller (N−k)× k matrices, A.

On one hand, the list of all inequivalent binary (N−k)× k matrices will be redundant as a list

of all binary [N, k]-codes, since the complete generator set matrix, [ 1lk |A ] admits more column-

permutations than A alone: inequivalent A-matrices may correspond to equivalent [ 1lk |A ]-matrices.

With this problem alone, we could still classify all inequivalent A-matrices, and thereafter sort out

the ‘external’ equivalences due to the larger automorphism group of [ 1lk |A ].

On the other hand, however, a list of inequivalent binary A-matrices also provides an incomplete

list of binary [N, k]-codes:

Proposition 2.2 The redundancy parts of generator sets of binary [N, k]-codes are not all sub-

matrices of the redundancy parts of the generator sets of maximal binary [N,κ(N )]-codes.

Proof: Since the redundancy part has (N−k) columns, every binary [N, k]-code can be generated

by code-words of Hamming weight no more than (N−k)+1: at most (N−k) 1’ in the redundancy

part, and precisely one 1 in 1lk.

10



But, for k < κ(N), this means that a binary [N, k]-code may well have generators of weight

(N−k) > (N−κ(N )), and so not be equivalent to any subcode of any binary [N,κ(N)]-code. �X
Remark 2.1: An extreme example is provided as follows: binary [32, 16]-codes are maximal in that

they are generated by the maximal number of generators, 16 = κ(32). The redundancy part of

such codes’ generator sets is a 16 binary matrix. The maximal weight of the generators is then no

more than 16 + 1, and having to be divisible by four, it must be 16. The maximal weight of the

redundancy part of any generator must therefore be 15.

By contrast, the generator 1111 1111 1111 1111 1111 1111 1111 1111 of the binary [32, 1]-code has

weight 32. The weight of its redundancy part is 31, and so could not be a sub-matrix of the

redundancy part of any binary [32, 16]-code.

Remark 2.2: Of course, the full binary [32, 16]-codes may well (in fact, they always do) contain

the above weight-32 codeword, so that another generator set of any binary [N, k]-code would have

contained this code-word.

In fact, we have:

Proposition 2.3 For every k < κ(N), every binary [N, k]-code is a subcode of some binary

[N,κ(N )]-code.

Proof: It follows from the proofs of Theorem 7 and Lemma 7 of Ref. [13], that every binary, doubly-

even [N, k]-code, with k < κ(N), may be completed to a binary, doubly-even [N,κ(N )]-code by

adding (κ(N)−k) linearly independent generators and the generated code-words; see Ref. [12]. �X
However, this may be difficult to discern from any preferred choice of generator sets.

2.3 1 ≤ N ≤ 8

The results for 1 ≤ N ≤ 8 are presented in Fig 1. Then, for example, the code-word corresponding

to the tetragon G(4)

1 = {1, 2, 3, 4} corresponds to the binary number · · · 00001111, G(4)

2 = {1, 3, 4, 6}
corresponds to · · · 00101101, G(4)

3 = {1, 2, 5, 6} corresponds to · · · 00110011, and so on. The codes

I1 I2 I3 D4 I1×D4 D6 E7 E8

1111 0 1111 00 1111
11 1100

000 1111
011 1100
101 0101

0000 1111
0011 1100
1111 0000
0101 0101

Figure 1: The tetragons representing the binary [N,κ(N)]-codes’ generator sets for 1 ≤ N ≤ 8.

are then read off the graphs by identifying the nodes as binary digits, following the pattern:

1 3 5 7 · · ·
2 4 6 8 · · · (26)
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Initially, the code-words themselves are given underneath the graphs, inked in a color that corre-

sponds to the tetragons in the graphs. Note that the blue tetragon is depicted as a straight line,

present in the E7 and E8 graphs, whereas the red, green and yellow ones are squares; this appearance

is of course immaterial. There are also many other depictions of the same and equivalent colored

subsets; the essential is, however, the adherence to Eq. (17).

Also, for each N , the generator sets of the maximal codes are presented. This then corresponds

to a maximal iterated Z2-quotient of IN ; ‘intermediate’ topologies are obtained by dropping one or

more of the generators, i.e., binary vectors, i.e., Z2 quotients from the iteration.

Combining the well known fact [15] that binary [N, k]-codes can be obtained from binary [N ′, k]-

codes by puncturing when N ′ = N+1 and the above results, we see that all binary doubly-even

[N, k]-codes with N ≤ 32 and k ≤ κ(N) may be obtained one from another, and so form a tree:

one starts from the empty code, which is the case for

N = 1 : [1, 0] = [0] , N = 2 : [2, 0] = [00] , N = 3 : [3, 0] = [000] , (27)

and obtains the first non-empty code at

N = 4 : [4, 0] = [0000] ⊂ [4, 1] = [0000
1111] , (28)

with the empty code its subset. To conserve space, we revert to only listing a generator set rather

than the full code. Adopting the notation [G]Nk , where G is a generator set of a code, we have the

initial stages of our tree of codes, based on the results from SS 1.3.2 and also given in Figure 1:

[−]10 [−]20 [−]30 [−]40 [−]50 [−]60 [−]70 [−]80PPP[11111111]81A
A
A
[1111]41 [01111]51 [001111]61 ��[0001111]71 [00001111]81HH

[00001111
11110000]

8

2@
@

[001111
111100]

6

2
[0001111
0111100]

7

2
[00001111
00111100]

8

2

@@[00001111
00111100
11110000

]8
3

B
B
B
BB[0001111

0111100
1010101

]7
3

[
00001111
0011 1100
01010101

]8
3

@@[00001111
00111100
11110000
01010101

]8

4

(29)

corresponding to the (evolutionary) tree of Adinkra topologies, named in SS 1.3.2 and also in
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N

1 2 3 4 5 6 7 8

I1

(1;1)
I2

(2;2)
I3

(4;4)
I4

(8;8)
I5

(16;16)
I6

(32;32)
I7

(64;64)
I8

(128;128)

D4

(4;4)
I1×D4

(8;8)
I2×D4

(16;16)
I3×D4

(32;32)
I4×D4

(64;64)
A8

(64;64)

D6

(8;8)
I1×D6

(16;16)
D4×D4

(32;32)
I2×D6

(32;32)

E7

(8;8)
D8

(16;16)
I1×E7

(16;16)

E8

(8;8)

I8

��	 @@R

I4×D4 A8

?
�

��+ ?

D4×D4 I2×D6

?
�

�
�+ ?

I1×E7D8

@@R ��	

E8

Table 1: The ‘fundamental’ indecomposable (1|N)-supermultiplet families for 1 ≤ N ≤ 8, indicated

by their Adinkra topology label and the number of bosons and fermions. To the right is the pattern

of quotient iterations for N = 8, the lowest case where this is not linear.

Figure 1:

I1 I2 I3 I4 I5 I6 I7 I8
XXXX

A8
J
J
J
JD4 I1×D4 I2×D4

�� I3×D4
I4×D4HH
D4×D4Z

ZZ
D6 I1×D6 I2×D6PPPP

D8
Z
Z
Z
Z
E7 I1×E7aaaaa E8

(30)

and each of which, by virtue of the ‘hanging gardens theorem’ of Ref. [1], corresponds to a family

of indecomposable representations of (1|N)-supersymmetry, growing combinatorially with N .

In “reading” the trees (29)–(30) from right to left, the links indicate “puncturing” [15]: dropping

a supersymmetry generator, so N 7→ (N−1), whereas the left-to-right direction corresponds to

“extending” the codes. On the other hand, each column in these, horizontal depictions of the

trees (29)–(30)—corresponding to horizontal levels in the more traditional, vertical depiction, is

clearly seen to be partitioned by variable k. A code [G]Nk may then be obtained from [G′]Nk+1 by the

lateral transformation of dropping one of the generators, and vice versa, from [G′′]Nk−1 by adding

a generator. These four operations provide the basic transformations of codes (and so Adinkra

topologies) from one into another. Additional, more complex operations are also possible [15].

To conclude, we list the number of bosons and fermions in the supermultiplets with the corre-

sponding topologies (30) in Table 1.
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2.4 Even More Than That!

Recall that additional supermultiplets may be defined using the ‘fundamental’ ones and linear

algebra, in precise analogy with representations of Lie algebras; the difference is only that the

number of ‘fundamental’ indecomposable representations with which to construct other ones is

increasingly larger as N grows9.

For example, let X be a (1|4)-supermultiplet with the D4 topology, and Y the direct sum of

two (1|4)-supermultiplets with the I4 topology. Using the hanging garden theorem of Ref. [1], the

bosons and the fermions may be redefined so that, in order of increasing engineering dimension,

their numbers are: (2; 4; 2) for X, and (2; 8; 12; 8; 2) for Y . It is now possible to define the (1|4)-

supermultiplet Y /X with (0; 4; 10; 8; 2) independent component fields, having gauged away the

lowest (2; 4; 2) component fields of Y by X. This is the cokernel of a supersymmetry-preserving

map X → Y .

Alternatively, we may shift the engineering dimensions of X, so its top component is on par

with the top component of Y ; denote this X ′. We may then constrain Y to the kernel of a

supersymmetry-preserving map Y → X ′, which has (2; 8; 10; 4; 0) independent component fields.

This in fact fits the usual definition of a complex-linear superfield from (4|1)-supersymmetry, where

the map is provided by the quadratic superderivative D̄α̇D̄
α̇: a complex-linear supermultiplet Ψ ⊂

Y is defined to satisfy D̄α̇D̄
α̇Ψ = 0, this being the kernel of D̄α̇D̄

α̇Y →X ′.

Quite clearly, this provides for a recursive explosion of (1|N)-representations, foreshadowed in

Ref. [1], which presents a semi-infinite sequence of such, ever-larger representations of the lowest

non-trivial (1|3)-supersymmetry.

2.5 9 ≤ N ≤ 16

Without further ado, we find:

N = 9

E8×I1

N = 10

E8×I2

D10

N = 11

E8×I3

D10×I1

D4×E7

N = 12

E8×D4

D12

N = 13

E8×D4×I1

D12×I1

D6×E7

E13

N = 14

E8×D6

D14

E7×E7

E14

(31)

for N ∈ [9, 14], each column with a fixed, indicated N , and which correspond to the codes indicated

in Table 2.
9By sharp contrast, Lie algebras have a finite number of ‘fundamental’ representations fixed per type: for all
n, An has the complex (n+1)-vector and its conjugate, Bn the (pseudo-)real 2n-spinor, Cn the pseudo-real
2n-vector, Dn the two 2n−1-spinors, and G2, F4, E6, E7 and E8 their 7,- 26,- 27,- 56- and 248-dimensional
representations. All other representations are obtained from these as (iterated) kernels and cokernels of maps
between tensor products of these ‘fundamental’ representations.
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N = 9 N = 10 N = 11 N = 12 N = 13 N = 14

I1×E8

0 00001111
0 00111100
0 11110000
0 01010101

I2×E8

00 00001111
00 00111100
00 11110000
00 01010101

I3×E8

000 00001111
000 00111100
000 11110000
000 01010101

D4×E8

0000 00001111
0000 00111100
0000 11110000
0000 01010101
1111 00000000

I1×D4×E8

00000 00001111
00000 00111100
00000 11110000
00000 01010101
01111 00000000

D6×E8

000000 00001111
000000 00111100
000000 11110000
000000 01010101
001111 00000000
111100 00000000

D10

0000001111
0000111100
0011110000
1111000000

I1×D10

0 0000001111
0 0000111100
0 0011110000
0 1111000000

D12

000000001111
000000111100
000011110000
001111000000
111100000000

I1×D12

0 000000001111
0 000000111100
0 000011110000
0 001111000000
0 111100000000

D14

00000000001111
00000000111100
00000011110000
00001111000000
00111100000000
11110000000000

E7×D4

0000000 1111
0001111 0000
0111100 0000
1010101 0000

E7×D6

0000000 001111
0000000 111100
0001111 000000
0111100 000000
1010101 000000

E7×E7

0000000 0001111
0000000 0111100
0000000 1010101
0011110 0000000
1111000 0000000
1010101 0000000

E13

0000000001111
0000000111100
0000011110000
0001111000000
1110101010101

E14

00000000001111
00000000111100
00000011110000
00001111000000
00111100000000
11010101010101

Table 2: The code-bases corresponding to the graphs (31), headed with the names of the corre-

sponding Cliffordinkras.

Finally, for N = 15, 16, we find:

N = 15

E8×E7

E15

N = 16

E8×E8

D16

(32)

which correspond to the codes in Table 3.

N = 15 N = 16

E7×E8

0000000 00001111
0000000 00111100
0000000 11110000
0000000 01010101
0001111 00000000
0111100 00000000
1010101 00000000

E15

000000000001111
000000000111100
000000011110000
000001111000000
000111100000000
011110000000000
101010101010101

E8×E8

00000000 00001111
00000000 00111100
00000000 11110000
00000000 01010101
00001111 00000000
00111100 00000000
11110000 00000000
01010101 00000000

D16

0000000000001111
0000000000111100
0000000011110000
0000001111000000
0000111100000000
0011110000000000
1111000000000000
1010101010101010

Table 3: The code-bases corresponding to the graphs (32), headed with the names of the corre-

sponding Cliffordinkras.
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Remark 2.3: A remark about our notation is in order. The Adinkra topology types, D2n, occurring

for example in the middle row of Table 2, derive their name from the corresponding standard in

the coding literature [13,14,15]. In all n 6= 0 mod 4 cases, the D2n-type codes have k = (n−1)

generators. However, at n = 0 mod 4, the codes in this straightforward sequence of D2n-type

become non-maximal, since an additional, weight-2n generator becomes available. For n = 4,

the addition of this extra generator results in the E8 code, but for n = 8, 12, 16, · · · , it is this

augmented , maximal code that is called D2n, rather than the non-maximal one. It would have been

more reasonable to keep D2n for the uniform sequence:

D4

1111

D6

001111
111100

D8

00001111
00111100
11110000

(
&

E8

00001111
00111100
11110000
01010101

) D10

0000001111
0000111100
0011110000
1111000000

D12

000000001111
000000111100
000011110000
001111000000
111100000000

D14

00000000001111
00000000111100
00000011110000
00001111000000
00111100000000
11110000000000

(33)

and so also have:
D16

0000000000001111
0000000000111100
0000000011110000
0000001111000000
0000111100000000
0011110000000000
1111000000000000

and

E16

0000000000001111
0000000000111100
0000000011110000
0000001111000000
0000111100000000
0011110000000000
1111000000000000
0101010101010101

, (34)

and so on, following the N = 8 naming convention. In fact however, the standard nomenclature

has no E16, and instead labels:

No Name
0000000000001111
0000000000111100
0000000011110000
0000001111000000
0000111100000000
0011110000000000
1111000000000000

and

D16

0000000000001111
0000000000111100
0000000011110000
0000001111000000
0000111100000000
0011110000000000
1111000000000000
0101010101010101

(35)

We then call the (non-maximal) code in the left-hand side of (35) D∗16, as it may be obtained from

D16 by omitting the largest-weight generator.

Other than that, the EN -type graphs presented here share a certain ‘sequential resemblance’,

best gleaned from the corresponding graphs in (31) and (32). Also, we have used the multiplicative

notation, as in I2×D4, since we are primarily interested in the Adinkra topology types; for codes,

this should be interpreted as the direct sum [14,15].

The fact that graphs turn out to be quite useful in listing codes is not surprising: the issue of

code-(in)equivalence is closely related to graph-(in)equivalence [17]. For not too large N , however,

innate human perception and pattern recognition then aids us in more easily discerning inequivalent

graphs than the corresponding codes.

The code and Adinkra topology trees (29)–(30) are then extended by the maximal codes in

Tables 2 and 3, and all their subcodes, following the procedure discussed for the 1 ≤ N ≤ 8 cases.

There are clearly many more codes and corresponding Adinkra topologies in the 9 ≤ N ≤ 16 and

0 ≤ k ≤ κ(N) batch than in the previous, 1 ≤ N ≤ 8 and 0 ≤ k ≤ κ(N) cases, and we omit listing

them all and assembling into the extension of the trees (29)–(30).
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2.6 N > 16

The grahical and combinatorial complexity of the task of finding even just the maximal codes now

begins to surpass the common observational pattern-recognition for exhaustively and effectively

constructing all inequivalent graphs and so all the codes and all the Adinkra topologies. We thus

seek a computer code that would do so.

3 Conclusions

Previous work has shown that the problem of classifying the finite-dimensional, off-shell, linear

representations of (1|N)-supersymmetry, known as (1|N)-supermultiplets, may be factored [1]. All

such representations consist of a graded vector space, spanned by an equal number of bosonic and

fermionic component fields, which supersymetry transforms into each other.

The coarse classification of these representations consists of specifying the topologies available

to the graphical rendition, Adinkras, of (1|N)-supermultiplets. With a topology fixed, the hanging

garden theorem of Ref. [1] constructs, recursively, all the Adinkras, and so supermultiplets, with

that topology.

In this note, we describe a relationship between the topologies available to Adinkras, graphs

designed to list them, and doubly-even error-correcting [N, k]-codes. Here, N denotes, respec-

tively, the number of supersymmetry generators, the number of graph nodes, and the length of the

binary codewords; in turn, k parametrizes the size of the (1|N)-supermultiplets as (2N−k−1; 2N−k−1)-

dimensional, the number of certain 4n-gon subgraphs, and the number of generators of the code.

We then present the complete results for 1 ≤ N ≤ 16, with the maximal choice, k = κ(N) in

sections 2.3 and 2.5. The task of listing all the non-maximal cases 0 ≤ k < κ(N) is done for

1 ≤ N ≤ 8 in section 2.3, resulting in the tree-diagrams (29)–(30). The particular results pertain-

ing to error-correcting codes have been known before [14,15], but have never been related to the

iterated Z2-quotients of the N -cube, much less to the topological structure of representations of any

algebra, least of all supersymmetry.

This now established connection, however, points to the inherent and formidable complexity in

the task of the coarse classification, leading to a previously unsuspected abundance of represen-

tations so defined. In fact, not only is, as established here, the number of topologies available to

Adinkras combinatorially growing with N , so is the number of Adinkras per topology [1]. Further-

more, the so constructed (1|N)-supermultiplets are merely the starting point in the usual recursive

construction of higher-than-fundamental representations of any algebra, the simplest non-trivial

infinite sequence of which was presented in Ref. [1].
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